STUDIES OF INTERACTIONS BETWEEN CYCLODEXTRINS AND FLAVONOIDS
Palecz B.1, Belica S.1, Stepniak A.1, Graca A.1, Buczkowski A.1, Zavodnik L.B.2, Zavodnik L.B.3
1 – Department of Physical Chemistry, University of Lodz, Poland
2 – Departament of Pharmacology and Physiology Agricultural University of Grodno, Belarus
3 – Department of Biochemistry, Yanka Kupala Grodno State University

Cyclodextrins (CDs) are cyclic oligosaccharides typically contain six (αCD), seven (βCD) or eight (γCD) glucose residues. They have a relatively nonpolar cylindrical cavity, which can bind and solubilize a wide variety of hydrophobic molecules like flavonoids, for example quercetin and rutin. Quercetin is a flavonoid widely distributed in nature. It is a naturally-occurring polar auxin transport inhibitor, a plant-derived flavonoid found in fruits, vegetables, leaves and grains. It also may be used as an ingredient in supplements, beverages or foods. Rutin, also called rutoside is the glycoside
between the flavonol quercetin and the disaccharide rutinose. It is one of the phenolic compounds found in the invasive plant species *Carpobrotus edulis* and contributes to the antibacterial and antioxidant properties of the plant. Rutin inhibits platelet aggregation as well as decreases capillary permeability, making the blood thinner and improving circulation what makes it useful in medicine and veterinary medicine. Quercetin and rutin are flavonoids with low solubility in water. To increase the bioavailability of those oral-taken drugs it is worth to check influence of the cyclodextrins on those substance. Cyclodextrins are able to improve solubility of the guest drug inserted into their cavities and make the drug absorption in the gastrointestinal tract more effective.

One of the methods to examine the complex formation between drugs and cyclodextrins is differential scanning calorimetry (DSC111) and UV-Vis spectroscopy. The set of parameters of interaction given by these experimental methods brings information about the strength and the energetic aspects of complex formation between guest and host molecules.

In this work the interaction parameters from DSC111 and UV-Vis measurements like binding constant, enthalpy of binding β-cyclodextrin with quercetin and rutin are presented. The parameters of complex formation are compared with each other and with available literature and the conclusions are made.