НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК БЕЛАРУСИ

РЕСПУБЛИКАНСКОЕ НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЕ УНИТАРНОЕ ПРЕДПРИЯТИЕ «ИНСТИТУТ БИОХИМИИ БИОЛОГИЧЕСКИ АКТИВНЫХ СОЕДИНЕНИЙ НАЦИОНАЛЬНОЙ АКАДЕМИИ НАУК БЕЛАРУСИ»

СОВРЕМЕННЫЕ ПРОБЛЕМЫ БИОХИМИИ И МОЛЕКУЛЯРНОЙ БИОЛОГИИ

(г. Гродно, 17-18 мая 2018 г.)

Сборник научных статей

(статьи в сборнике опубликованы в авторской редакции)

Под общей редакцией доктора медицинских наук, профессора И.Н.Семенени доктора биологических наук, профессора, члена-корреспондента НАН Беларуси А.Г.Мойсеёнка

Минск 2018

- 9. Биофортификация куриного яйца. Витамины и каротиноиды. / А. Ш. Кавтарашвили [и др.] // Сельскохозяйственная биология, 2017, Т. 52, № 6.- С. 1094-1104. doi: 10.15389/agrobiology.2017.6.1094rus
- 10. Коденцова, В. М. Анализ отечественного и международного опыта использования обогащенных витаминами пищевых продуктов / В. М. Коденцова, О. А. Вржесинская // Вопр. питания. 2016. Т. 85, № 2. С. 31-50.
- 11. Коденцова, В. М. Витамины и минералы как фактор предупреждения дефектов развития плода и осложнений беременности / В. М. Коденцова // Медицинский совет. В поликлинике. 2016. № 9. С. 42-50.
- 12. Коденцова, В. М. Градации уровней потребления витаминов: возможные риски при чрезмерном потреблении / В. М. Коденцова //Вопр. питания. 2014. Т. 83, № 3. С. 41-51.
- 13. К рабочей дискуссии о проекте ГОСТ Р "Комплексы витаминноминеральные. Общие технические условия" / В.М Коденцова [и др.] //Пищевая промышленность.- 2018.- №2. С.29-34.
- 14. Витаминно-минеральные комплексы в лечебном питании. / В.М Коденцова [и др.] // Consilium Medicum. -2017.-Т. 19, № 12.-С. 76–83.
- 15. Влияние приема витаминно-минерального комплекса с профилактическими дозами микронутриентов на обеспеченность витаминами пациентов противотуберкулезного диспансера. / О.А. Вржесинская [и др.] // Инфекционные болезни- 2018.- Т. 16, №1. С.79-86. DOI: 10.20953/1729-9225-2018-1-79-86

УДК 577.164.11:577.152.3

МОЛЕКУЛЯРНАЯ ИДЕНТИФИКАЦИЯ ТИАМИНМОНОФОСФАТАЗЫ

$\it U.К. Koлoc^{1,2}$, $\it A.В. Янцевич^3$, $\it A.В. Иванчик^3$, $\it T.В. Шкель^3$, $\it C.A. Усанов^3$, $\it A.Ф. Макарчиков^{1,2}$

¹Республиканское научно-исследовательское унитарное предприятие «Институт биохимии биологически активных соединений Национальной академии наук Беларуси», Гродно, Беларусь

²Учреждение образования «Гродненский государственный аграрный университет», Гродно, Беларусь

³Государственное научное учреждение «Институт биоорганической химии Национальной академии наук Беларуси»,

Минск, Беларусь

Резюме. Методом тандемной масс-спектрометрии установлена аминокислотная последовательность тиаминмонофосфатазы, очищенной из печени курицы. Показано, что фермент идентичен низкомолекулярной кислой фосфатазе, которая также известна как низкомолекулярная фосфотирозинпротеин-фосфатаза. Таким образом, гидролиз тиаминмонофосфата в клетках животных осуществляется белком, предположительно участвующим в

MOLECULAR IDENTIFICATION OF THIAMINE PHOSPHATASE

I.K.Kolos^{1,2},A.V.Yantsevich³,A.V.Ivanchik³,T.V.Shkel³,S.A.Usanov³, A.F.Makarchikov^{1,2}

¹Institute of Biochemistry of Biologically Active Compound NAS of Belarus Grodno, Belarus

²Grodno State Agrarian University, Grodno, Belarus ³Institute of Bioorganic Chemistry, NAS of Belarus, Grodno, Belarus

Summary. Amino acid sequence of thiamine monophosphatase from chicken liver has been resolved using ESI tandem mass spectrometry. The enzyme was shown to be identical with low-molecular-weight acid phosphatase, also known as low-molecular-weight protein phosphotyrosine phosphatase. Thus, the hydrolysis of thiamine monophosphate in animal tissues is catalyzed by a protein presumably involved in cellular signaling mechanisms.

Введение. Метаболизм витамина В₁ в клетках животных включает в себя ряд взаимосвязанных процессов синтеза, протеидизации деградации фосфорилированных производных тиамина, основными которых количественном отношении являются тиаминдифосфат (ТДФ) тиаминмонофосфат (ТМФ). По имеющимся на сегодня сведениям ТДФ служит коферментом 32-х белков, в т. ч. 5-ти ферментов, кодируемых геномами пируватдегидрогеназы (КФ высших животных: 1.2.4.1), оксоглутаратдегидрогеназы (КФ 1.2.4.2), 3-метил-2-оксобутаноатдегидрогеназы (КФ 1.2.4.4), транскетолазы (КФ 2.2.1.1) и 2-гидроксиацил-КоА-лиазы (КФ 4.1.2.n2) [6]. Активностью ТДФ-зависимых ферментов определяется ход важнейших реакций энергетического, углеводного и аминокислотного обменов. Биохимическая роль ТМФ неизвестна. Наряду с ТДФ и ТМФ в клетках организмов различных филогенетических линий в малых количествах присутствуют тиаминтрифосфат (ТТФ) и аденозин-тиаминтрифосфат (АТТФ) [5, 12], функции которых также не установлены. Результаты экспериментов с бактериальными культурами указывают на возможное участие ТТФ и АТТФ в регуляторных/сигнальных механизмах [2, 5, 14]. В настоящее время из ферментов системы метаболизма витамина B_1 у животных на молекулярном уровне охарактеризованы только тиаминпирофосфокиназа (КФ 2.7.6.2) и растворимая ТТФаза млекопитающих (КФ 3.6.1.28) [10, 15]. Получены также данные, предполагающие, что в биосинтез ТТФ у бактерий и в головном мозге крысы может быть вовлечена АТФ-синтаза (КФ 3.6.3.14), а в скелетных мышцах – цитозольная изоформа аденилаткиназы (АК1, КФ 2.7.4.3) [3, 7, 13]. мембранно-ассоциированной ТТФазы, Вопрос природе катализирующих образование АТТФ и гидролиз ТМФ, ТДФ и АТТФ, остается открытым. В предыдущих работах нами было показано [1, 8], что гидролиз

печени курицы катализируется растворимым ферментом молекулярной массой 18 кДа, который, судя по кинетическим свойствам, субстратной специфичности и субклеточной локализации, может представлять собой низкомолекулярную кислую фосфатазу (LMW-AP, КФ также как фосфотирозин-протеин-фосфатаза (LMW-PTP, КФ известную исследования 3.1.3.48). Цель заключалась молекулярной данного идентификации ТМФазы курицы.

Материалы и методы исследования. В работе использовались ТМФ «Fluka»; трипсин, ацетонитрил, муравьиная кислота, ТРИС, трихлоруксусная кислота (ТХУ), бычий сывороточный альбумин (БСА), дитиотреитол (ДТТ) «Sigma»; фенилметилсульфонилфторид (ФМСФ), сервацел P-23 «Serva»; SP сефадекс C-50, сефадекс G-75, сефадекс G-50 «Pharmacia»; остальные реагенты аналитической степени чистоты.

Свежую печень цыплят-бройлеров получали на птицекомплексе СПК «Прогресс-Вертелишки».

Активность ТМФазы регистрировали по скорости высвобождения неорганического фосфата (P_i), количество которого определяли методом Lanzetta с соавт. [9]. Стандартная реакционная смесь объемом 0,2 мл включала 25 мМ трис-25 мМ малеатный буфер, рН 6,0, 1 мМ ТМФ и анализируемый образец белка. Реакцию проводили при 37°C в течение 10–30 мин, останавливали, добавляя 0,1 мл 10 %-ной ТХУ; смесь центрифугировали и отбирали на анализ аликвоты по 0,1 мл. Концентрацию P_i находили по калибровочному графику.

Концентрацию белка определяли по методу Bradford [4], используя в качестве стандарта БСА, по поглощению при 280 нм.

Молекулярная масса ТМФазы определялась на времяпролетном массспектрометре Microflex LRF (Bruker Daltonics GmbH) с источником ионизации MALDI. Нанесение на мишень растворов образца и матрицы осуществляли методом сухой капли. В качестве стандарта использовали Protein Calibration Standard II (Bruker Daltonics GmbH).

Частичную аминокислотную последовательность ТМФазы устанавливали методом тандемной масс-спектрометрии. Смесь пептидов, полученную в результате трипсинового гидролиза фермента, разделяли на хроматографе «Agilent 1290» с использованием колонки ZORBAX Extend C18 (1,8 мкм, 2,1 × 50 мм) в режиме градиентной элюции ацетонитрилом, содержащим 0,2 %-ную муравьиную кислоту, при температуре 40°С и скорости потока подвижной фазы 0,2 мл/мин. Для детекции использовался квадрупольно-времяпролетный масс-анализатор Q-TOF 6550 (Agilent Technologies) с источником ионизации электроспреем (ESI). Извлечение спектров и поиск по базам данных белков проводили с использованием программного обеспечения Spectrum Mill (Agilent).

Результаты исследования и их обсуждение. Очистку ТМФазы из печени цыплят-бройлеров проводили по разработанному нами методу. Процедура включала 7 этапов.

Экстракция. 100 г печени, хранившейся при -20 °C, разрезали на мелкие

куски и гомогенизировали 2 мин в 2,5 объемах 50 мМ трис-HCl буфера, рН 7,5, содержащего 0,15 М КСl, 1 мМ ЭДТА, 0,1 мМ ФМСФ и 5 мМ ДТТ, в гомогенизаторе MPW-1 в режиме максимальной скорости. Осадок удаляли центрифугированием в течение 60 мин при 10000 g.

Кислотная обработка. К надосадочной жидкости добавляли 1 М уксусную кислоту до рН 5,0, перемешивали 30 мин, центрифугировали раствор для удаления белковых агрегатов (60 мин, 10000 g) и доводили рН надосадочной жидкости до 7,5 с помощью 1 М трис-HCl буфера, рН 8,9.

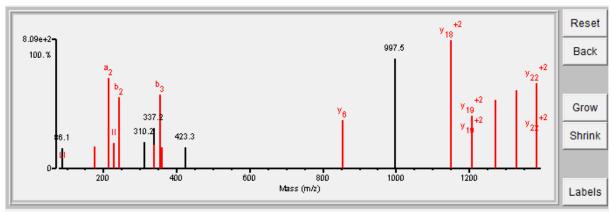
Фракционирование сульфатом аммония. К супернатанту при постоянном перемешивании добавляли сульфат аммония до 35 %-ного насыщения. Через 30 мин раствор центрифугировали для удаления осадка (30 мин, 10000 g), полученный супернатант высаливали при степени насыщения 35–60 % и отделяли осадок центрифугированием (30 мин, 10000 g).

 Γ ель-фильтрация на сефадексе G-75. Осадок растворяли в 20 мМ МЭС буфере, рН 6,0, содержащем 1 мМ ЭДТА, 50 мМ NaCl, 5 мМ ДТТ, и хроматографировали на колонке (Ø 5,0 \times 75 см) с сефадексом G-75 со скоростью 5 см/ч. ТМФазная активность элюировалась одним пиком. Активные фракции объединяли и подвергали дальнейшей очистке.

Ионообменная хроматография. Объединённые фракции наносили на колонку (Ø 1,6 \times 25 см) с SP сефадексом C-50, уравновешенную тем же буферным раствором. После промывки колонки адсорбированный на носителе белок элюировали линейным повышающимся градиентом KH_2PO_4 от 0 до 100 мМ (по 150 мл в каждой камере). ТМФазная активность вымывалась одним пиком. Фракции с высокой удельной активностью объединяли и высаливали сульфатом аммония при 80 %-ном насыщении. Осадок отделяли, центрифугируя взвесь на протяжении 30 мин при 10000 g.

Гель-фильтрация на сефадексе G-50. Белковый осадок растворяли в 5 мл МЭС буфера и хроматографировали образец на колонке (Ø 2,5 \times 100 см) с сефадексом G-50 в том же буфере при скорости потока 5 см/ч.

Хроматография на сервацеле P-23. На заключительном этапе очистки объединенные фракции с предыдущей стадии наносили на колонку с сервацелом P-23 (Ø 0,7 \times 3 см), уравновешенную МЭС буфером. После промывки колонки 10 объемами буфера ферментативная активность обнаруживалась в эффлюенте, который концентрировали с помощью центрифужных фильтров Corning Spin-X UF Concentrators и использовали для анализа.


В процессе очистки удельная активность ТМФазы возросла по сравнению с экстрактом в 714 раз – с 3,5 нмоль/мин/мг белка до 2,5 мкмоль/мин/мг белка.

Для определения аминокислотной последовательности образец очищенного фермента подвергали протеолизу в присутствии трипсина, разделяли смесь пептидов на фракции ВЭЖХ и анализировали методом ESI MS/MS с поиском в базе данных Swiss-Prot. Всего идентифицировано 9 пептидов, соответствующих участкам первичной структуры LMW-AP (LMW-PTP) курицы. На аминокислотной последовательности LMW-AP (accession

number Q5ZKG5), приведенной ниже, эти участки выделены жирным шрифтом и подчеркнуты:

- 1 maagevksvl fvclgnicrs **piaeavfrkl vtdekvenk**w ridsaatsty 50
- 51 eignppdyrg qtcmkkhgit mnhiarqvtk ddfqtfdyil cmdesnlrdl 100 101 krksnqvkdc kakiellgay dpqkqliied pyygnekdfe tvyeqcvrcc 150
- 151 kaflekph 158

Тандемный масс-спектр с соотнесением m/z к образующимся фрагментным ионам самого протяженного из идентифицированных пептидов TMФазы QLIIEDPYYGNEKDFETVYEQCVR представлен на рисунке 1.

Puc. 1 — Macc-спектр продуктов коллизионной фрагментации (CID) пептида QLIIEDPYYGNEKDFETVYEQCVR, полученного при трипсинолизе препарата ТМФазы из печени пыпленка

Следует сказать, что молекулярная масса LMW-AP курицы, рассчитанная аминокислотной последовательности, кодируемой открытой рамкой считывания, равна 18195,88 Да. В то же время по данным MALDI TOF массспектрометрии M_r ТМФазы из печени цыпленка составляет 18058,337 Да. Наряду с инструментальной погрешностью, это расхождение, очевидно, может объясняться посттрансляционными модификациями фермента. Известно, например, что хотя биосинтез полипептидов в клетке начинается с кодона AUG, соответствующего формил-Met у бактерий и Met у эукариот, у большинства белков эти остатки (а иногда и последующие) элиминируются при процессинге. С другой стороны, по некоторым оценкам до 80% от общего количества растворимых белков клетки ацетилированы по N-концевой аминокислотной последовательности аминокислоте. Анализ ТМФазы ExPASy помошью программ сервера (www.expasy.org/tools) также свидетельствует о наличии в структуре белка потенциальных сайтов фосфорилирования, гликирования и сульфатирования.

Первоначально считалось, что LMW-AP, широко распространенная в различных филогенетических линиях — от бактерий до млекопитающих, может участвовать в метаболизме рибофлавина, поскольку наряду с арилфосфатами ее субстратом является флавинмононуклеотид (FMN). После того, как было установлено, что LMW-AP осуществляет гидролиз фосфотирозина, ее стали рассматривать как фосфотирозин-протеин-фосфатазу (LMW-PTP). В системе *in vitro* этот фермент способен к дефосфорилированию таких белковых

субстратов, как рецептор инсулина, Srk-киназа и др. [11]. В любом случае, каковы бы ни были функции LMW-AP *in vivo*, результаты наших исследований свидетельствуют о том, что данный белок катализирует гидролиз ТМФ в клетках животных.

Заключение. Проведенные нами исследования позволили установить, что белком, отвечающим за ТМФазную активность в печени цыпленка, является низкомолекулярная фосфотирозин-протеин-фосфатаза (LMW-PTP, Uniprot ID Q5ZKG5). Takum образом, ТΜФ служит физиологическим субстратом фермента, биохимические функции которого, предположительно, состоят в дефосфорилировании FMN и нескольких белков, участвующих в процессах дифференцировки адгезии клеток (рецепторы И тромбоцитарного фактора роста, Srk-киназа, факторы транскрипции семейства STAT и др.). Это указывает на возможную связь системы метаболизма тиамина с обменом витамина В2 и регуляцией внутриклеточных сигнальных путей.

Список литературы.

- 1. Колос, И.К. Идентификация энзимов гидролиза тиаминмонофосфата в печени кур / И.К. Колос, А.Ф. Макарчиков // Укр. биохим. журн. -2014. Т. 86, № 6. С. 39-49.
- 2. Adenosine thiamine triphosphate accumulates in *Escherichia coli* cells in response to specific conditions of metabolic stress / T. Gigliobianco [et al.] // BMC Microbiology. 2010. Vol. 10:148.
- 3. An alternative role of FoF1-ATP synthase in Escherichia coli: synthesis of thiamine triphosphate / T. Gigliobianco [et al.] // Sci. Rep. 2013. Vol.: 1071.
- 4. Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding / M.M. Bradford // Anal. Biochem. 1976. Vol. 72. P. 248–254.
- 5. Discovery of a natural thiamine adenine nucleotide / L. Bettendorff [et al.] // Nat. Chem. Biol. 2007. Vol. 3. P. 211–212.
- 6. Enzyme. Enzyme nomenclature database [Electronic resource] / Mode of access: http://www.expasy.org. Date of access: 10.04.2018.
- 7. Evidence for *in vivo* synthesis of thiamin triphosphate by cytosolic adenylate kinase in chicken skeletal muscle / K. Miyoshi [et al.] // J. Biochem. 1990. Vol. 108. P. 267–270.
- 8. Kolas, I.K. Copurification of chicken liver soluble thiamine monophosphatase and low molecular weight acid phosphatase / I.K. Kolas, A.F. Makarchikov // Ukr. Biochem. J. 2017. Vol. 89, N 6. P. 13–21.
- 9. Lanzetta, P.A. An improved assay for nanomole amounts of inorganic phosphate / P.A. Lanzetta [et al.] // Anal. Biochem. 1979. Vol. 100. P. 95–97.
- 10. Molecular characterization of a specific thiamine triphosphatase widely expressed in mammalian tissues / B. Lakaye [et al.] // J. Biol. Chem. -2002. Vol. 277. P. 13771-13777.
- 11. Protein tyrosine phosphatases as potential therapeutic targets / R.J. He [et al.] // Acta Pharmacol. Sin. 2014. Vol. 35. P. 1227–1246.