Использование аскорбиновой кислоты для усиления гуморального иммунитета у телят

Харитонов А.П., Поплавская СЛ., Корчак И.А., Свиридова А.П., Копоть О.В. - Гродненский государственный аграрный университет

Среди всех патологий сельскохозяйственных животных, обусловленных технологией содержания, кормления и использования их, наибольший удельный вес занимают незаразные болезни молодняка. На фоне резкого снижения естественной резистентности, иммунной реактивности и развития иммунопатологии нередко развиваются бытовые инфекции.

Приобретенные иммунные дефициты развиваются при заболеваниях органов пищеварения, при гипо- и авитаминозах А, Д, Е и С. При этом возникают структурно-функциональные изменения в иммунной системе.

Гиповитаминоз C наносит экономический животноводству ущерб вследствие падежа новорожденных, задержки их развития, снижение прироста лечебно-профилактические живой массы затрат на мероприятия. И на 8-10% Продуктивность таких животных снижается одновременно увеличивается себестоимость продукции.

В настоящее время для профилактики скрытых гиповитаминозов применяются различные биологически активные вещества, как синтетического, так и естественного происхождения.

Следовательно, целью нашей работы явилось изучение механизма нарушения звеньевой неспецифической резистентности у новорожденных телят при гиповитаминозе С. Материалом для исследований служили телята, подобранные в подопытные группы по принципу пар-аналогов, в возрасте от 1 до 10 дней, живой массой 30-35 кг при рождении. Всего было отобрано 4 группы животных по 8 телят в каждой. Телята первой (контрольной) группы витамин С не получали. Телята второй, третьей и четвертой подопытных групп получали аскорбиновую кислоту в дозе соответственно 500 мг/гол, 1000 мг/гол и 1500 мг/гол в сутки. Препарат вводили ежедневно с первого по десятый день.

Кровь для исследований брали из яремной вены и определяли процент фагоцитоза (отношение нейтрофилов, поглотивших тест-микробы к общему числу подсчитанных нейтрофилов), фагоцитарный индекс (среднее количество тест-микробов, захваченных одним лейкоцитом, при 120-минутной инкубации) и индекс бактерицидности (отношение числа убитых (переваренных) тест-микробов внутри всех нейтрофилов к общему числу поглощенных нейтрофилами тест-микробов (убитых+живых) при 120-минутной инкубации).

В процессе исследований было установлено, что процент фагоцитоза у животных второй подопытной группы к концу опыта был выше на 4,9% по

сравнению с этим показателем у животных контрольной группы (табл.1). У телят третьей и четвертой подопытных групп процент фагоцитоза увеличился соответственно на 6,5% и 8,9% (P<0,05). У животных контрольной группы этот показатель в течение опыта оставался приблизительно на одном уровне.

Фагоцитарный индекс у животных контрольной группы к концу опыта снизился на 12,5%. У телят второй, третьей и четвертой подопытных групп к концу опыта фагоцитарный индекс оставался приблизительно на таком же уровне или даже несколько вырос, что было выше по сравнению с этим показателем у животных контрольной группы соответственно на 16,9%, 18,6 и 20,5%.

Индекс бактерицидности нейтрофилов у животных контрольной и подопытных групп к концу опыта снизился. Однако у животных контрольной группы это снижение более значительное и составляет 24,7%. К концу опыта у животных второй подопытной группы индекс бактерицидности нейтрофилов был выше по сравнению с таковым показателем у животных контрольной группы на 25,5%, а у животных третьей и четвертой подопытных групп выше на 28,4% и 23,6% соответственно.

Таблица 1. Влияние различных доз витамина С на фагоцитарную активность нейтрофилов.

Группы	Период	Процент	Фагоцитарный	Индекс
животных	исследования	фагоцитоза	индекс	бактерицидности
				нейтрофилов
1-контро-	начало	68,1+1,03	6,89+0,15	70,12±0,91
льная	опыта			
	конец	67,9±1,14	$6,12\pm0,14$	52,85+0,64
	опыта			
2-подо-	начало	$68,2\pm1,47$	$6,82\pm0,27$	69,24±1,16
пытная	опыта			
	конец	71,2+1,43	7,16±0,26*	66,33+1,57*
	опыта			
3-подо-	Начало	67,8+1,15	7,01+0,51	68,28+1,32
пытная	опыта			
	конец	72,3+1,02*	7,26+0,25*	67,99+1,45*
	опыта			
4-подо-	Начало	68,7+1,67	6,98+0,36	70,71+0,81
пытная	опыта			•
	конец	73,9+1,38*	7,38+0,25*	65,32+1,34*
	опыта			

⁻ разница статистически достоверна

Следовательно, использование аскорбиновой кислоты новорожденным телятам стимулирует неспецифическую резистентность организма, что следует из исследования в крови процента фагоцитоза, фагоцитарного индекса и индекса бактерицидности.