гербицида, который можно применять в эффективной дозе без угнетения одного из компонентов смеси; зернобобовые культуры, особенно люпин, требуют более глубокого пахотного горизонта почвы, чем зерновые злаки; возможен «конфликт интересов» ризосферных микроорганизмов в зоне пересечения функционирующих корней злаков и бобовых; имеет место алеллопатическое воздействие ячменя на проростки горха и люпина.

Для устранения указанных проблем и создания дополнительных преимуществ был предложен инновационный микрорельефный способ посева злаково-бобовых зерносмесей.

При данном способе, в процессе посева формируются почвенные гребни равнобедренно треугольной формы, в которые высевается бобовый компонент смеси из туковых ящиков сеялки передними сошниками, а злаковый компонент высевается между почвенными гребнями задними сошниками сеялки из семенных ящиков [4].

ЛИТЕРАТУРА

- 1. Современные технологии возделывания сельскохозяйственных культур: учебнометодическое пособие/И. Р. Вильдфлуш [и др.]; под ред. И. Р. Вильдфлуша, П. А. Саскевича. Горки: БГСХА, 2016. 383 с.
- 2. Камасин, С. С., Саскевич А. С. Оптимизация норм высева семян- залог высоких урожаев яровых зерновых культур // Земляробства і ахова раслін. 2010. Вып. 1. С. 18-21.
- 3. Камасин, С. С. Оптимизация норм прк в системе точного земледелия / С. С. Камасин, И. К. Мирончиков // Матер. Межд. научно-практической конференции «Стратегия и приоритеты развития земледелия и селекции в Беларуси. Достижения науки производству», посвященной 15-летию Научно-практического центра НАН Беларуси по земледелию. Минск, ИВЦ «Минфина», 2021.- С. 69-72.
- 4. Камасин, С. С. Микрорельефный способ посева путь решения технологических и экологических проблем выращивания злаково-бобовых зерносмесей // Вестник БГСХА. 2007. Вып. 4. С. 59-64.

УДК 633.21/.4:631.89

ПРИМЕНЕНИЕ НОВЫХ КОМПЛЕКСНЫХ МИНЕРАЛЬНЫХ УДОБРЕНИЙ КАК ИННОВАЦИОННОЕ НАПРАВЛЕНИЕ ВОЗДЕЛЫВАНИЯ МНОГОЛЕТНИХ ТРАВ

Г. А. ГЕСТЬ, канд. с.-х. наук, доцент УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Основными показателями развития кормопроизводства на 2021–2025 гг. по Государственной программе «Аграрный бизнес» являются:

обеспечение общественного поголовья скота высокоэнергетическими, сбалансированными кормами путем производства ежегодно не

менее 45 ц к. ед. на условную голову, из них травяных кормов – не менее 38 п:

- заготовка сенажа в полимерной пленке ежегодно не менее 9 % от общего объема продукции;
- посев к концу 2025 г. многолетних трав на площади не менее
 млн. га, из которых доля бобовых и бобово-злаковых трав должна составлять около 90 %;
- применение при перезалужение лугопастбищных угодий не менее 50 % бобовых и бобово-злаковых трав;
- обеспечение не менее 70 % потребности отрасли животноводства в собственном растительном белке.

Для выполнения показателей программы большое значение имеет использование многолетних трав для приготовления сена, силоса, сенажа и зеленого корма. Необходимо в этом случае обоснованно подбирать для возделывания кормовых культур участки земли, контролировать продолжительность использования трав, правильно составлять травосмеси, а также вносить достаточное количество органических и минеральных удобрений [2, 5].

Поэтому цель исследования состояла в обосновании применения комплексных минеральных удобрений с добавками микроэлементов при возделывании многолетних злаковых и бобово-злаковых трав.

Опыты проводились в 2019—2020 гг. на дерново-подзолистой лег-косуглинистой почве УО СПК «Путришки» Гродненского района. Агрохимические показатели пахотного горизонта почвы, подстилаемой с глубины 0,6—0,7 м моренным суглинком, следующие: рН в КСІ 5,8—6,0, 1,76—1,84 % гумуса, 228—246 г подвижного фосфора и 168—182 г обменного калия на 1 кг почвы.

В злаковую смесь входили кострец безостый, овсяница луговая и тимофеевка, соотношение компонентов которой 3,5; 3,4 и 7,5 млн. всхожих семян на 1 га, соответственно. Бобово-злаковая смесь состояла из овсяницы луговой, овсяницы красной, тимофеевки, фисталиума, клевера лугового и люцерны посевной, количество семян в которой составляло: 3,4; 3,4; 7,5; 0,7; 2,8; 5,0 млн. штук на 1 га.

Схема опыта, состоящая из пяти вариантов, представлена в таблице 1. В опыте исследовались дозы, сочетания, соотношения и сроки внесения карбомидно-аммиачной смеси (КАС), аммонизированного суперфосфата, хлористого калия и микроудобрений меди, марганца и молибдена. В первом варианте опыта удобрения не вносились (контрольный вариант). В других вариантах в основное внесение, то есть перед перезалужением, применялись фосфорные и калийные удобрения. После первого укоса с целью подкормки многолетних трав, вносились различные дозы КАС. После второго укоса вносилось расчетное количество КАС и хлористого калия [4].

Урожайность по вариантам опыта учитывалась путем скашивания зеленой массы многолетних трав учетной площади с последующим взвешиванием полученной продукции.

Расчет экономической эффективности применения минеральных удобрений и микроэлементов в посевах многолетних трав проводился по формулам с применением технологических карт.

В опытах применялись балансовый и монографический методы, а также отдельные приемы экономико-статистического метода [1].

Установлено, что при трехукосном использовании многолетних трав злаковой травосмеси второго года выращивания, самая низкая урожайность их была в контрольном варианте -125 ц/га, бобовозлаковой смеси -226 ц/га. При такой урожайности выход кормовых единиц составил 26,3 и 55 ц соответственно (табл. 1).

Таблица 1. Влияние комплексных удобрений на продуктивность многолетних трав второго года использования (3 укоса)

	Злаковая травосмесь			Бобово-злаковая травосмесь		
Варианты опыта	урожай- ность, ц/га	продук- тив- ность, ц/к.ед.	+,- к контролю	урожай- ность, ц/га	проду- ктив- ность, ц/к.ед.	+,- к конт- ролю
1. Контроль (без удобрений)	125	26,3	ı	262	55,0	ı
$2.\ P_{25}K_{70} + N_{45\ (первый}$ $_{yкос)} + N_{45}K_{70\ (второй\ укос)}$	429	90,1	+63,8	366	76,6	+21,6
$3.\ P_{50}K_{90}+N_{60 (первый}$ $_{ykoc)}+N_{60}K_{50 (второй ykoc)}$	446	93,7	+67,4	403	84,6	+29,6
$4.\ N_{45}P_{25}K_{70}+Cu,\ Mn,\ Mo_{(\ первый\ укос)}+N_{45}K_{70}$ (второй укос)	455	95,6	+69,3	388	81,5	+26,5
$5.\ N_{60}P_{50}K_{90}$ +Cu, Mn, $Mo_{({ m nog\ первый\ укос})}$ + $N_{60}K_{50}$ (второй укос)	488	102,5	+76,2	425	89,5	+34,5

Во втором и третьем вариантах, где перед посевом и во время вегетации многолетних трав вносилось представленное количество минеральных удобрений, урожайность трав увеличилась до 429-446 и 366-403 ц/га. При этом выход кормовых единиц с 1 га увеличился до 90,1-93,7 и 76,6-84,6 ц.

В четвертом и пятом вариантах, где при добавлении к минеральным удобрениям после первого укоса микроудобрений, а после второго укоса расчетных доз азотных и калийных удобрений, урожайность злаковой смеси составила 455–488 ц/га, злаково-бобовой – 388–425 ц/га. При этом увеличился выход кормовых единиц с 1 га по срав-

нению с контрольным вариантом на 69,3-76,2 и 26,5-34,5 ц, соответственно.

Лучшим в исследованиях оказался вариант, где вносились после первого укоса $N_{60}P_{50}K_{90}$ с добавлением Cu, Mn, Mo и $N_{60}K_{50}$ – после второго укоса многолетних трав. Выход кормовых единиц увеличился по сравнению с контрольным вариантом на 76,2 и 34,5 ц соответственно.

В третий год использования многолетних трав урожайность их оказалась ниже по сравнению со вторым годом использования (табл. 2). При этом, наоборот, урожайность бобово-злаковой смеси выше злаковой смеси. В данном опыте, как и в предыдущем, самая низкая урожайность многолетних трав была в контрольном варианте, где удобрения не вносились, 125 и 266 ц/га. Соответственно ниже оказался выход кормовых единиц (38 и 48,9 ц). С применением тех же доз минеральных удобрений и микроэлементов урожайность многолетних трав и продуктивность их увеличиваются. Самые высокие показатели продуктивности многолетних трав отмечены в варианте, где вносились после первого укоса $N_{60}P_{50}K_{90}$ с добавлением Сu, Мn, Мо и после второго укоса многолетних трав — $N_{60}K_{50}$: урожайность составила 443 и 394 ц/га, а продуктивность — 93 и 82,7 ц к. ед.

Таблица 2. Влияние комплексных удобрений на продуктивность многолетних трав третьего года использования (3 укоса)

	Злако	вая травосі	месь	Бобово-злаковая травосмесь		
Варианты опыта	уро-жай- ность, ц/га	проду- ктив- ность, ц/к.ед.	+,- к кон- тро-лю	уро-жай- ность, ц/га	проду- ктив- ность, ц/к.ед.	+,- к кон- тролю
1. Контроль без удобрений	181	38,0	_	233	48,9	_
$2.P_{25}K_{70}+N_{45 (\text{первый укос})}+ \ N_{45}K_{70 (\text{второй укос})}$	368	77,3	+39,3	293	61,5	+12,6
$3.\ P_{50}K_{90}+N_{60\ (\text{первый укос})}+\ N_{60}K_{50\ (\text{второй укос})}$	401	84,2	+46,2	322	67,6	+18,7
$4.\ N_{45}P_{25}K_{70\ комплексное\ c}Cu, \ Mn,\ Mo\ (_{102\ первый\ укос)}+ \ N_{45}K_{70\ (второй\ укос)}$	388	81,5	+43,5	335	70,4	+21,5
$5.\ N_{60}P_{50}K_{90\ комплексное\ c}Cu, \ Mn,\ Mo_{(под первый укос)} + \ N_{60}K_{50\ (второй укос)}$	443	93,0	+55,0	394	82,7	+33,8

На настоящем этапе развития сельского хозяйства является актуальным изучение экономической эффективности применения различ-

ных форм и сроков внесения удобрений и микроэлементов под многолетние травы. Для этих целей используют следующие показатели: урожайность многолетних трав, выход с 1 га и себестоимость 1 ц продукции, кормовых и кормо-протеиновых единиц, производственные затраты на 1 га [3].

В опытах, в среднем за два года исследований, установлено (табл. 3), что в контрольном варианте самые низкие производственные затраты (611 руб/га), себестоимость 1 ц продукции (2,49 руб.), себестоимость 1 ц кормовых и кормо-протеиновых единиц (11,86 и 11,3 руб.).

Таблица 3. Экономическая эффективность производства многолетних трав

Варианты опыта	Уро- жай- ность, ц/га	Выход с 1 га к. ед., ц	Выход с 1 га КПЕ., ц	Производ. затраты на 1 га, руб.	Себест. 1 ц пр- ции, руб.	Себест. 1 ц к. ед., руб.	Себест. 1 ц КПЕ, руб.
1. Контроль без удобрений	248	52,1	54,6	611	2,49	11,86	11,3
2. P ₂₅ K ₇₀ + N ₄₅ (первый укос) + N ₄₅ K ₇₀ (второй укос)	330	69,3	72,6	1119	3,39	16,14	15,4
$3.\ P_{50}K_{90}+N_{60}$ (первый укос) + $N_{60}K_{50}$ (второй укос)	363	76,2	79,8	1219	3,36	16,0	15,3
$4.N_{45}P_{25}K_{70}$ комплексное cCu, Mn, Mo (под первый укос)+ $N_{45}K_{70}$ (второй укос)	362	76,0	79,6	1271	3,51	16,72	16,0
$5.N_{60}P_{50}K_{90}$ комплексное с $Cu, Mn, Mo_{(под первый укос)} + N_{60}K_{50}$ (второй укос)	410	86,1	90,2	1374	3,35	15,96	15,2

В связи с затратами на покупку, транспортировку, внесение минеральных удобрений, а также на доработку дополнительной продукции увеличились общие производственные затраты на 508–763 руб./га. Также увеличилась себестоимость 1 ц продукции на 1,1–0,7 руб., себестоимость 1 ц к. ед. – на 4,14–4,86 руб. и себестоимость 1 ц КПЕ – на 3,9–4,7 руб. Положительным при этом является снижение этих показателей от второго варианта к пятому (применение различных доз удобрений и сроков их внесения). В этом случае наблюдается увеличение выхода с 1 га на 17,2–34,0 ц кормовых и 18,0–35,6 ц кормопротеиновых единиц по сравнению с контрольным вариантом.

Таким образом, проведенные исследования показали, что внесение перед посевом многолетних трав $N_{60}P_{50}K_{90}$ + Cu, Mn, Мо и после второго укоса $N_{60}K_{50}$, способствовало увеличению продуктивности многолетних трав второго года пользования на 76,2, представленных злаковой смесью, и, бобово-злаковой, на 34,5 ц к, ед.

По многолетним травам третьего года пользования этот показатель составил, соответственно, 55,0 и 33,8 ц к. ед. Выход с 1 га КПЕ увеличился на 35,6 ц, а себестоимость 1 ц КПЕ повысилась только на 3,9 руб.

ПИТЕРАТУРА

- 1. Γ есть, Γ .А. Примерные технологические карты возделывания полевых культур // Γ .А. Гесть, Д.М. Мирский. Гродно, 2021. С. 8.
- 2. Дегтяревич, И.И. Организация производства на сельскохозяйственных предприятиях: учеб. прособие / И.И. Дегтяревич. Гродно: ГГАУ, 2022. 228 с.
- 3. Дудук, А.А. Оценка эффективности технологических операций, агроприемов и технологий в земледелии /А.А. Дудук, В.М. Кожан, А.В. Линкевич. Гродно : ГГСХИ, 1996. С. 1–13.
- 4. Система применения удобрений : учеб. пособие / В.В. Лапа [и др.]; под науч. ред. В.В. Лапа. Гродно, 2011. С. 206–216.
- 5. Яковчик, Н.С. Организация сельскохозяйственного производства: учеб. пособие / Н.С. Яковчик, Н.Н. Котковец, П.И. Малихторович; под общ. ред. проф. Н.С. Яковчика. Минск, 2016. С. 405–407.

УДК 631.811.98:001.89

БИОПРЕПАРАТ ПОЛЕ-АГРОВИТ Р И ЕГО ПРИМЕНЕНИЕ ПРИ ВЫРАЩИВАНИИ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР

А. Н. ИВАНИСТОВ, канд. с.-х. наук, доцент, Ю. Л. ТИБЕЦ, канд. с.-х. наук, доцент, УО «Белорусская государственная сельскохозяйственная академия», г. Горки, Республика Беларусь О. Н. ЖУК, канд. биол. наук, доцент, ГУ «Полесский государственный университет» г. Пинск, Республика Беларусь;

Сохранение земель и их рациональное использование является неотъемлемым направлением политики устойчивого развития и обеспечения экологической безопасности государства. Постановление Совета Министров Республики Беларусь от 29 апреля 2015 г. № 361 «О некоторых вопросах предотвращения деградации земель (включая почвы)» в качестве приоритетов в области предотвращения деградации земель предусматривает соблюдение агротехнологий, обеспечивающих сохранение и увеличение естественного плодородия почв; разработку и внедрение инновационных агротехнологий; развитие органи-