Таким образом, голозерный овес может стать перспективной культурой в качестве сырья для производства крупяных продуктов, хлебобулочных и кондитерских изделий или кормов для сельскохозяйственных животных.

ЛИТЕРАТУРА

- 1. Источники овса голозерного для селекции на качество зерна / Γ . А. Баталова [и др.] // Аграрн. наука Евро-Северо-Востока. 2018. Т. 66, № 43. С. 18-23.
- 2. Чекина, М. С. Перспективы использования овса в производстве продуктов специального назначения / М. С. Чекина, Т. В. Меледина, Г. А. Баталова // Изв. Санкт-Петербург. гос. аграрн. ун-та. -2016. № 43. С. 20-25.
- 3. Баталова, Г. А. Селекция овса на качество зерна в Волго-Вятском районе / Г. А. Баталова // Зернобобовые и крупяные культуры. -2018. -№ 3 (27). C. 81-87.
- 4. Оценка технологических свойств некоторых сортов голозерного овса, как сырья для производства крахмала / Н. Р. Андреев [и др.] // Зернобобовые и крупяные культуры. -2016. -№ 1 (17). C. 83-89.
- 5. Селекция голозерного овса в условиях Центральной России / В. С. Сидоренко [и др.] // Зернобобовые и крупяные культуры. -2018. -№ 4 (28). C. 82-89.
- 6. Баталова, Г. А. Перспективы и результаты селекции голозерного овса / Г. А. Баталова // Зернобобовые и крупяные культуры. -2014. -№ 2 (10). -C. 64-69.

УДК 637.146:579.64:547.458.2

РАЗРАБОТКА ТЕХНОЛОГИИ И РЕЦЕПТУРЫ ПРОДУКТА СМЕТАННОГО ТЕРМИЗИРОВАННОГО

Михалюк А. Н., Архипчик О. А.

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Молочная отрасль Беларуси имеет доминирующее значение в перерабатывающей промышленности, т. к. производит самые важные для населения страны продукты питания. По данным Министерства здравоохранения Республики Беларусь, от общего веса продуктового набора потребительской корзины жителей наибольший вес (44 %) приходится на долю молока и молочных продуктов.

Важнейшим направлением развития молочной отрасли нашей страны является расширение емкости внутреннего рынка молочной продукции посредством увеличения ассортимента, повышение экономической доступности, реализация программ обеспечения здорового питания населения, брендирование товаров. В этой связи, определенный интерес представляют кисломолочные продукты с повышенным содержанием жира и белка в качестве основы для различных соусов, муссов, пудингов и др. Одним из таких продуктов является сметана.

Сметана является основой для различных соусов, которые подходят к самым различным блюдам [6, 7].

В этой связи целью научно-исследовательской работы явилось разработка технологии и рецептуры производства продукта сметанного термизированного.

Исследования по разработке рецептур и технологии производства продукта сметанного термизированного проводились в учебной лаборатории кафедры технологии хранения и переработки животного сырья учреждения образования «Гродненский государственный аграрный университет».

Объектом исследований служили образцы соуса сметанного термизированного 15%-й жирности с наполнителем «Прованские травы» (базилик, шалфей, розмарин, тимьян, мяту перечную, орегано, чабер садовый и майоран) в количестве 0,1; 0,2 и 0,3 % соответственно, с использованием сметаны с м. д. ж 16,0 %, молока обезжиренного с массовой долей СОМО = 8,25 %, стабилизатора с массовой долей сухих веществ 86,0 % «Стабисол QR 3В» фирмы «Hydrosol» (Германия), соли пищевой с массовой долей сухих веществ 95,0 %, а также наполнителя «Прованские травы» в различных количествах и сочетаниях в соответствии с рецептурами.

В ходе выполнения научно-исследовательской работы использовались органолептические, физико-химические и микробиологические методы исследований сырья и готовой продукции. Для получения сливок и выработки из них сметаны использовали молоко натуральное. Отбор проб молока-сырья производили в соответствии с ГОСТ 13928-84 «Молоко и сливки заготовляемые. Правила приемки и методы отбора и подготовка их к анализу». Температура молока при приемке не должна превышать 10 °С. В первую очередь проводят отбор проб для микробиологических анализов [1].

Определение массовой доли жира в молоке проводили методом Гербера по СТБ ISO 2446-2009 «Молоко и молочные продукты. Методы определения жира» [9]. Определение кислотности осуществляли по ГОСТ 3624-92 «Молоко и молочные продукты. Титриметрические методы определения кислотности» [4]. Определение плотности молока производили ареометрическим методом в соответствии с ГОСТ 3625-84 «Молоко и молочные продукты. Методы определения плотности» [5]. Сливки оценивали по органолептическим, физико-химическим и микробиологическим показателям в соответствии с 1887-2016 «Сливки питьевые. Общие технические условия» [8].

Готовый продукт (соус сметанный термизированный) оценивали по органолептическим, физико-химическим и микробиологическим

показателям в соответствии с требованиями ТУ ВУ 500043093.075-2011 «Соусы сметанные термизированные. Технические условия» [11] и ТР ТС 033/2013 «О безопасности молока и молочной продукции» (с изменениями на 10 июля 2020 года) [10] по стандартным методикам. Определение массовой доли жира в продукте проводили кислотным методом по СТБ ISO 2446-2009 «Молоко и молочные продукты. Методы определения жира» [9]. Определение титруемой кислотности осуществляли по ГОСТ 3624-92 «Молоко и молочные продукты. Титриметрические методы определения кислотности» [4]. Массовую долю белка определяли по ГОСТ 25179-2014 «Молоко и молочные продукты. Методы определения массовой доли белка» [2].

Микробиологические показатели соуса сметанного термизированного контролировали в соответствии с требованиями ТР ТС 033/2013 «О безопасности молока и молочной продукции» (с изменениями на 10 июля 2020 года) [10]. Для определения микробиологических показателей в готовом продукте использовали метод последовательных разведений с последующим высевом 1-5-го разведений на общие и дифференциально-диагностические питательные среды.

Количество мезофильных аэробных и факультативно-анаэробных микроорганизмов (КМАФАнМ), а также БГКП (коли-формы) определяли по ГОСТ 32901-2014 «Молоко и молочная продукция. Методы микробиологического анализа» [3].

Для оценки морфологического статуса колоний микроорганизмов готовили постоянные препараты по стандартным методикам. Исследование микроскопических препаратов бактерий проводили с использованием микроскопа СХ23 (Olympus, Япония) и цветной цифровой СМОS-камеры EP-50 с программным обеспечением.

В результате выполнения научно-исследовательской работы были предложены и обоснованы основные технологические параметры производства соуса сметанного термизированного наполнителем «Прованские травы» в различных концентрациях в соответствии с рецептурами, предложены и обоснованы основные технологические параметры производства соуса сметанного термизированного, изучены органолептические, физико-химические и микробиологические показатели полученных образцов продукта и дана экономическая оценка эффективности производства.

Результаты экспертной оценки органолептических показателей соуса сметанного термизированного свидетельствует о том, что наиболее оптимальными концентрациями наполнителя «Прованские травы» явились концентрации 0,1 и 0,2 % соответственно. Использование наполнителя в указанных концентрациях позволяет улучшить органо-

лептические показатели готового продукта. Результаты исследований продукта по физико-химическим и микробиологическим показателям свидетельствуют о том, что все образцы продукта соответствовали требованиям ТУ ВУ 500043093.075-2011 «Соусы сметанные термизированные. Технические условия» и требованиям ТР ТС 033/2013 «О безопасности молока и молочной продукции» (№ 67 от 9 октября 2013 года с изменениями на 10 июля 2020 года).

ЛИТЕРАТУРА

- 1. ГОСТ 13928-84 Молоко и сливки заготовляемые. Правила приемки, методы отбора проб и подготовка их к анализу. Введ. 01.01.1986. Госстандарт, 1986. С. 14.
- 2. ГОСТ 25179-2014 «Молоко и молочные продукты. Методы определения массовой доли белка» [Текст]. Введ. 2015-07-01. М.: ИПК Издательство стандартов, 2015. С. 9.
- 3. ГОСТ 32901-2014 Молоко и молочные продукты. Методы микробиологического анализа [Текст]. Введ. 2016-01-09. Госстандарт, 2016. С. 24.
- 4. ГОСТ 3624-92 Молоко и молочные продукты. Титриметрические методы определения кислотности [Текст]. Введ. 1994-01-01. М.: ИПК Издательство стандартов, 2001. С. 8.
- 5. ГОСТ 3625-84 Молоко и молочные продукты. Методы определения плотности [Текст]. Введ. 2001-08-02. М.: Стандартинформ, 2009. С. 13.
- 6. Зобкова, З. С. Особенности технологии термизированных (пастеризованных), сквашенных молочных продуктов / З. С. Зобкова, Т. П. Фурсова, С. А. Щербакова // Молочная промышленность. 2006, N 1. С. 41-44.
- 7. Зобкова, 3. С. Функциональные цельномолочные продукты / 3. С. Зобкова // Молочная промышленность. 2006, N 3. С. 46-52.
- 8. СТБ 1887-2016 «Сливки питьевые. Общие технические условия» [Текст]. Введ. 2016-09-01. Минск: Госстандарт, 2016. С. 10.
- 9. СТБ ISO 2446-2009 Молоко и молочные продукты. Методы определения жира [Текст]. Введ. 2009-29-12. Минск: Госстандарт, 2017. С. 15.
- 10. Технический регламент Таможенного союза «О безопасности молока и молочной продукции» ТР ТС 033/2013 (№ 67 от 9 октября 2013 года с изменениями на 10 июля 2020 года).
- 11. ТУ ВҮ 500043093.075-2011 «Соусы сметанные термизированные. Технические условия».

УДК 637.1.026

СОВЕРШЕНСТВОВАНИЕ ОБОРУДОВАНИЯ АСПИРАЦИИ НА РАСПЫЛИТЕЛЬНЫХ СУШИЛЬНЫХ УСТАНОВКАХ

Раицкий Г. Е., Леонович И. С.

УО «Гродненский государственный аграрный университет» г. Гродно, Республика Беларусь

Рассмотрим типовую схему распылительной прямоточной сушильной установки для молочных продуктов.